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Abstract—Most CFA (color filter array) interpolation-based 
digital image forensic methods characterize inter-pixel 
relationship with a linear model and use the estimated 
interpolation coefficients as features for image source camera 
identification. However, various CFA models and interpolation 
algorithms must be tried for coefficient estimation during the 
detection process in that the CFA pattern of an image is often 
unknown at the receiver’s end. This incurs high computational 
complexity. Instead of using inter-pixel correlations, Ho et al. 
proposed to use inter-channel demosaicking/color interpolation 
traces for identifying the source camera model of a test image. In 
this work, we propose an improved algorithm. We first extract 
two variance maps by estimating the variances of each 
component of the green-to-red and green-to-blue spectrum 
differences, respectively, and then take the shape and texture 
features of these two maps for camera model identification. 
Experimental results show that our method achieves better 
overall performance. 
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I.  ITRODUCTION 
In the imaging process of most digital cameras, a color 

filter array (CFA) is placed before the sensor to capture one of 
the three primary colors for each pixel while the other two 
color components are interpolated with a specific 
demosaicking algorithm. Many interpolation algorithms utilize 
relationship between neighboring pixels to estimate the two 
missing color components, which inevitably introduces 
correlations among adjacent pixels or different color channels. 
As a result, the traces left by the color interpolation algorithm 
can be used as evidence for digital image source identification.   

In order to determine the interpolation algorithm employed 
by a camera, Popescu and Farid [1] estimated the probability 
map and linear interpolation coefficients using an EM 
(Expectation Maximization) algorithm. The traces of the 
interpolation algorithm for source camera identification were 
also studied by Bayram et al. in [2]. They detected cyclical 
peaks in the spectrum caused by the periodicity of CFA 
interpolation, and fed the features into a support vector 
machine (SVM) for image classification (i.e., camera device 
identification). Swaminathan et al. [3] established linear 
equations for nine types of pixels based on the linear models of 
CFA interpolation. Since the equations were solved by 
searching through all CFA models and the interpolation 

algorithms, that scheme is time consuming. Wang et al. [4] 
proposed a blind detection method, which employs a 
covariance matrix to set up and solve the interpolation 
coefficient equations.  

Different from the above inter-pixel correlations-based 
methods, Ho et al. [5] introduced an inter-channel correlations-
based algorithm by assuming that the Fourier spectral 
coefficients of different color channels have the same variance. 
The variances of the coefficients of the color spectrum 
difference were used to distinguish different interpolation 
algorithms. With a simple and unified model, their method 
achieves relatively high accuracy. However, this method 
assumes that the red and blue channels work in an identical 
fashion, which is inconsistent with the way some types of 
cameras actually work. In addition, it often requires a large 
amount of computational load due to the EM estimation step 
for the calculation of variances and the use of K-Nearest 
Neighbors classifier for final classification. 

In this paper, we proposed an improved algorithm that aims 
at overcoming the weaknesses of Ho et al.’s work. We obtain 
the variance map that corresponds to different color channels 
by calculating the variance of spectrum differences. Both shape 
and texture features are then extracted from the variance maps 
for classification. Compared with the algorithm in [5], our 
algorithm achieves better overall performance.  

The paper is organized as follows. We first introduce the 
motivation in Section 2, and then describe the proposed 
algorithm in Section 3. Experimental results and conclusion 
will be given in Section 4 and 5, respectively. 

II. PROBLEM STATEMENT 
It is commonly known that human eyes are more sensitive 

to the green component of visible light. For this reason, most 
CFAs tend to sample the G channel at a higher rate than those 
of the R and B channels. In the well-known Bayer CFA 
sampling pattern, G samples are twice as many as R and B 
samples. The spectrum of G channel therefore has less aliasing 
and its high frequency components are better preserved. Most 
of the color interpolation algorithms are based on the 
assumption that different color channels have similar high 
frequency components. They use the high frequency 
components of G channel to replace those of R and B channels 
(e.g., [7]-[10]). Taking account of this fact, Ho et al. [5] 
proposed to identify the camera model based on the 
interpolation algorithm employed because the interpolation 
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process would leave inter-channel demosaicking traces on the 
images. Below we briefly review [5] and point out its 
shortcomings. Since the elements of R and B channels appear 
at the same frequency in the Bayer CFA sampling pattern, we 
only use R channel as an example in the narration.  

Let sR  and sG  be the color planes sampled by the CFA. 

For the Bayer CFA sampling pattern, the size of sR  is only 

1/4 of the image size while sG  is 1/2 of the image size. To 

obtain sR  and sG  with the full image size, zeros are filled in 
at non-sample locations. Assume that R  and G  are color 
planes reconstructed from sample values sR  and sG , 
respectively. Due to the reason in the last paragraph, G  is 
simply reconstructed from sG . The reconstruction of R  can 
then be helped with G . Let srG  be the color plane that is 
produced by sampling G  at red sample locations and filling 
in zeros at other color sample locations. R  can be 
reconstructed by 
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where  denotes interpolation algorithm. lR  and lG  
denote the low-frequency bands of R  and G , respectively. 

hG  denotes the high-frequency band of G . Likewise, one 
can reconstruct the blue color plane B . 

Ho et al. investigated the relationship between the 
interpolation algorithm and (1). They performed the Fourier 
transform on both sides of (1): 

 

ssr RGRG ~~~~
                         (2) 

 

where is the frequency response of the interpolation 

algorithm. G~ , srG~ , R~  and sR~  are the spectra of G , srG , R  

and sR , respectively. So the distinction between different 
interpolation algorithms can be reflected by the frequency 
response . Ho et al. further calculated the variance of the 
spectrum difference RG ~~

 as:  
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where uv  is the thuv entry of . 2
srGuv  and 2

sRuv  are 

the variances of srG~  and sR~  at vu, , respectively. uv  is 

the correlation coefficients between uvsR~  and uvsrG~ . 

Assuming that the components in R~ and G~  have the same 
variance, Ho et al. let 22

)(
2

)( uvRuvGuv ssr
. By applying 

these equations to (3), they obtained 
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Because  corresponds to a low-pass filter, it leaves a 
salient trace on the variance of the color spectrum difference 
[5]. The change of }{ uvVar  can reflect the change of 2

uv . 
So }{ uvVar  was used in [5] to distinguish different 
interpolation algorithms. During camera model identification, 
Ho et al.  did not distinguish the variances of RG ~~

 and 
those of BG ~~

. Below we make some analysis of [5]. 

Let us first investigate the assumption about 
22

)(
2

)( uvRuvGuv ssr
. We calculate the variances from 

100 images of size 4272 2848, each image being split into 
non-overlapping 100 100 blocks. The relationship of the 
variance of the spectrum coefficients between different color 
channels is shown in Fig 1. It can be seen that almost all 
points are scattered along the line y = x. This verifies that the 
assumption of [5] about 22

)(
2

)( uvRuvGuv ssr
 is true.  

We then investigate feasibility of Ho et al’s assumption 
that the variances of RG ~~

 and those of BG ~~
 

are the same. We give an example in Fig. 2. It clearly 
demonstrates the difference between R and B channels of 
Panasonic DMC-LX2. 2

uv  of G-R channels and G-B channels 
have quite different patterns. So we say that some types of 
cameras treat the R and B channels differently. In order to 
design an algorithm for identifying different camera models, 
we should treat the variances of RG ~~

 and those of 
BG ~~

 separately. 

Other apparent weaknesses of the algorithm in [5] include 
the use of the EM algorithm to calculate the variances and the 
Nearest Neighbors classifier for image classification. Both 
would incur high computational complexity. To tackle these 
problems, we propose an improved algorithm. 
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Fig. 1.  Relationship of variances of the spectrum coefficients between R and 
G channel (a) and between B and G (b). 
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Fig. 2. Difference between R channel (a) and B channel (b). The two-
dimensional coordinate of 100 100 frequencies have been converted into 
1 10000 one-dimensional frequency coordinate. R&G refers to the pair of 
color channels R and G, while B&G  refers to the pair of color channels B and 
G. 
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Fig. 3.  Flow chart of the proposed algorithm. 
 

 

III. PROPOSED ALGORITHM 
We propose an improved algorithm, as shown in Fig. 3. 

The steps and reasons are given as follows. 

1) Given a test image or a number of test images, we divide 
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each image into non-overlapping blocks to obtain sufficient 
samples for variance estimation. If the number or the size of 
test images is small, we use small-size blocks, and vice versa.  
Note that if samples are insufficient, the estimation of variance 
is inaccurate; however, if the block size is too small, the 
statistical significance of the extracted spectrums would be 
reduced.  

2) DFT is applied to the three color planes for each block to 
get R~ , G~ , and B~ . The spectrum difference RG ~~

 and 
BG ~~

are then calculated. For notational convenience, we 
denote the M samples at location ),( vu of each block 

as Mivui ,...,2,1,, . We can get the variance 

maps
RG

and 
BG

corresponding to different color 

channels, where vuVarvu i ,, . 

3) We then extract the image features from the obtained 
variance map. These features will drive the AdaBoost 
classifier. We have two major reasons to use classifiers like 
Stumps AdaBoost classifier rather than K-Nearest Neighbors 
classifier. Firstly, the latter would become more 
computationally inefficient with the increase of dimensionality 
of the variance map. Secondly, it is easier to control the set of 
features driving the classifiers like Stumps AdaBoost classifier. 
For example, we can add features into or subtract features 
from the set to optimize the classifier. Besides, we can easily 
borrow features originally derived for other applications.  

In this work, we propose to use the shape and texture of 
the variance maps because we observed that they are very 
similar for the same camera model and are quite different for 
different camera models (i.e., low intra-model and high inter-
model variations). We select 4-dimensional shape features 
from [11] and 8-dimensional texture features from [12] for 
each color channel. To make the shape and texture more 
prominent, we equalize the histogram of the variance map 
prior to the feature extraction. The shape features employed 
are  
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where pq  is the scaled qp  order central moments of 

yxf , . The above 4-dimensional invariant moments have 
been proved to be invariant to the translation, rotation, and 
scale transform [11]. 

We use the statistical distribution of pixel values to reflect 
the characteristics of image textures. This work extracts Gray 
Level Co-occurrence Matrixes (GLCM)-based features [12], 

which is defined as the joint probability matrix of two fixed-
interval pixel values. To describe texture features more 
comprehensively, the textures in four different directions (i.e., 
0°, 45°, 90°, and 135°) are considered. The four groups of 
texture features are calculated as follows. 

The first group is Texture Energy, which is a measure of 
homogeneity of the image. 
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The second group is Texture Contrast, which is a measure 
of contrast or the amount of local variations present in an 
image. 
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The third group is Texture Correlation, which is a measure 
of gray-tone linear dependencies across the image. 
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The fourth group is Texture Entropy, which is a measure 
of the amount of information contained within an image.           
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For (9)-(16), 1g  and 2g  are values of the two fixed-
interval pixel locations, and ),( 21 ggp  represents GLCM of 
the variance map.  

In total, we get 24 image features from the variance maps, 
that is, 12 image features for each pair of color channels (R 
and G, and B and G). 

4) We choose Stumps AdaBoost in [13] for classification 
because of its simplicity and high speed. This algorithm can 
achieve high accuracy by using misclassified samples 
repeatedly. 

IV. EXPERIMENT AND DISCUSSION 
To evaluate the performance of the proposed algorithm, 

images from seven popular consumer digital cameras 
including Canon 450D (DSLR), Canon IXUS870, Nikon D40 
(DSLR), Nikon D90 (DSLR), Nikon E3200, Olympus 
C3100Z and Panasonic DMC-LX2), are used in our 
experiment. For each camera, 50 of 100 images are used for 
the training set while the other 50 are used for the test set. The 
image block size is 100 100 and the number of weak 
classifiers of AdaBoost is 20. 

 
 

  
(a) Canon 450D 

 

  
(b) Canon IXUS870 

 

  
(c) Nikon D40 

 

   
(d) Nikon D90 

 

  
(e) Nikon E3200 

 

  
(f) Olympus C3100Z 

 

  
(g) Panasonic DMC-LX2 

 
Fig. 4. Sample variance maps. The variance maps extracted from G-
R spectrum difference (left) and from G-B spectrum difference 
(right). 

 
It can be observed from Fig. 4 that the variance maps for 

different camera models usually possess different patterns. 
This fact justifies our algorithm. On the other hand, there are 
distinguishable differences between the variance maps from 
G-R spectrum difference and those from G-B spectrum 
difference. This fact verifies that the manner we treat the 
variances extracted from G-R spectrum difference and those 
extracted from G-B spectrum difference separately is sound. 

 
Table 1. Comparison of two algorithms. QF (quality factor) 

   algorithms 
 

JPEG QF 
Ours 

 
[5] 

uncompressed 91.90% 97.00% 
100 95.67% 94.95% 
90 94.29% 92.90% 
80 92.33% 91.76% 
70 91.90% 90.29% 

 
To investigate the detection accuracy and robustness of the 

proposed algorithm, we conduct pair-wise classification 
among these seven cameras. We compare our algorithm with 
the algorithm in [5] to demonstrate the improvement our 
method has made. It can be seen from Table 1 that in the case 
of JPEG compression, our algorithm outperforms the 
algorithm in [5] in both detection accuracy and robustness. 
Note that the detection accuracy in this work is the average 
value. Although the algorithm in [5] outperforms ours for 
uncompressed images, JPEG compressed images are more 
common for real-world applications. Therefore, the advantage 
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of our algorithm is apparent. The reason why the algorithm in 
[5] outperforms ours for uncompressed images is yet to be 
studied. However, it seems that slight compression can 
remove high frequency noise and thus benefits the extraction 
of our features. In other words, our shape and texture features 
are robust against compression to some degree. 

We then discuss two cases for the treatment of R and B 
channels. In Case 1, we obtain two variance maps, one from 
G-R spectrum difference, and the other from G-B spectrum 
difference. We separately calculate the shape and texture 
features from these two maps and obtain 24 features. In Case 2, 
we do not distinguish R and B channels and treat them equally. 
So we only obtain 12 features. Table 2 shows the results 
achieved in these two cases. Apparently, the accuracy for Case 
1 is higher than that in Case 2. This result proves that the way 
we advocate to treat the variance map from G-R spectrum 
difference and that from G-B spectrum difference separately is 
more advantageous.  

 
Table 2. Comparison of two different approaches 

 approach 
 

JPEG QF 
Case 1 Case 2 

uncompressed 91.90% 88.52% 
100 95.67% 94.67% 
90 94.29% 93.00% 
80 92.33% 91.43% 
70 91.90% 89.43% 

 

V. CONCLUSION 
The use of inter-channel demosaicking traces for source 

camera identification has seldom been studied in literature. In 
this work, we have proposed a new algorithm of using the 
features of inter-channel demosaicking traces for determining 
the source camera models. Our major contributions include the 
separate treatment of G-R and G-B spectrum differences and 
the use of a feature-driven classifier. Experimental results 
have confirmed the superiority of our algorithm in terms of 
both detection accuracy as well as robustness to JPEG 
compression. Our algorithm is also adaptable to different 
features. Good features would enhance its performance. This 

paper only uses simple shape and texture features to 
demonstrate the feasibility of our method. The selection of 
more suitable features is our future work.  
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