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Abstract. Challenges from the uncontrolled environments are the main difficul-
ties in making hand gesture recognition methods robust in real-world scenarios. 
In this paper, we propose a real-time and purely vision-based method for hand 
gesture recognition in uncontrolled environments. A novel tracking method is 
introduced to track multiple hand candidates from the first frame. The move-
ment directions of all hand candidates are extracted as trajectory features. A 
modified HCRF model is used to classify gestures. The proposed method can 
survive challenges including: gesturing hand out of the scene, pause during 
gestures, complex background, skin-coloured regions moving in background, 
performers wearing short sleeve and face overlapping with hand. The method 
has been tested on Palm Graffiti Digits database and Warwick Hand Gesture 
database. Experimental results show that the proposed method can perform well 
in uncontrolled environments. 

1 Introduction 

Hand gesture recognition is an intuitive way for facilitating Human Computer Interac-
tion (HCI). However, its robustness against uncontrolled environments is widely 
questioned. Many challenges exist in real-world scenarios which can largely affect the 
performance of appearance based methods, including presence of cluttered back-
ground, moving objects in background, gesturing hand out of the scene, pause during 
the gesture, and presence of other people or skin-coloured regions, etc. This is the 
reason why the majority of works in hand gesture recognition are only applicable in 
controlled environments.  

There have been few attempts for recognising hand gestures in different uncon-
trolled environments. Bao et al. [1] proposed an approach using SURF [2] as features 
to describe hand gestures. The matched SURF point pairs between adjacent frames 
are used to produce the hand movement direction. This method only works under the 
assumption that the gesture performer occupies a large proportion of the scene. If 
there are any other moving objects at the same scale of the gesture performer in the 
background, the method will fail. Elmezain et al. [3] proposed a method which seg-
ments hands from the complex background using 3D depth map and colour informa-
tion. The gesturing hand is tracked by using Mean-Shift and Kalman filter. Fingertip 
detection is used for locating the target hand. However, this method can only deal 
with the cluttered background and is unable to cope with other challenges mentioned 
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After the pruning process, the ROIs in the current frame are drawn. For the SURF 
key points in one ROI in the previous frame, there are key SURF points in the current 
frame that matched to them. The corresponding ROI in the current frame is defined as 
the minimum bounding rectangle of these matched key points in the current frame. 
During every frame, according to the number of the remaining matched key points P 
after pruning and the area of the new ROIs A, the boundaries of the new ROIs may be 
extended by e pixels. The value of e is set as: 
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 (2) 

Instead of only keeping the matched key points in each of the new ROIs of the cur-
rent frame, all key SURF points within these new ROIs are preserved for matching 
with those in the next frame. The reason for enlarging the ROIs is that they may not 
cover the entire area of the target hand candidates. Hence, in order to get as many 
tracking features as possible from the current ROIs of target hand candidates, the 
ROIs need to be enlarged to makes sure that the new ROIs cover the corresponding 
hand candidates. 

For every frame, the dominant movement direction of each ROI will be calculated 
as the hand trajectory feature of this hand candidate. Assume we have P matched 
SURF pairs between frames t-1 and t after pruning in a ROI, denoted by 

{ }1 1 2 2
1 1 1, , , ,..., ,P P

t t t t t t tM S S S S S S− − −= , where 1,i i
t tS S−   is the ith pair. The domi-

nant movement direction of the rth ROI in frame t is defined as: 

 ( ) { } 1
drt , arg max

D
d d d

t r q ==  (3) 

where,  { } 1
D

d d
q = is the histogram of the movement direction of all matched SURF 

key point pairs in this ROI, and d indicates the index of directions. qd is the dth bin of 
the histogram. Each bin has an angle interval with range α, and D = 360°/ α. We have 
tested various values for α and found that 20° produces best results. Definition of qd 
is: 
 

 ( )2

1
,

P p p
d t tp

q C k S S dδ=
 =  
 

  (4) 

where, k(x) is an monotonic kernel function which assigns smaller weights to those 
key SURF points farther away from the centre of this ROI; ( ),p

tS dδ  is the Kroneck-

er delta function which has value 1 if the movement direction of 1, p p
ttS S−   falls 

into the dth bin; and the constant C is a normalisation coefficient defined as: 
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Another desirable feature of our proposed method is that we only use hand move-
ment direction as hand trajectory feature. Since speed and location of gestures are 
used as features in [4], to make their method less sensitive to the location and size of 
the gestures, face detection is used to estimate the location and scale of the gesture 
performers. Unlike [4], the location and speed of hand candidates are not used to de-
scribe hand gestures, hence our method does not need to estimate the location and 
scale of the gestures, the modified HCRF model is also not sensitive to the length of 
the gestures, which makes the proposed method invariant against the location, speed 
and size of the hand gestures. 

3 Gesture Classification 

After the tracking stage, once the movement direction vectors, namely the input se-
quences for HCRF model, of every hand candidates in the videos are extracted, they 
are put into a multi-class chain HCRF model as feature vectors, as shown in Figure 3. 
The videos are naturally segmented as one single frame is a single node in HCRF 
model. HCRF has been proven to be one of the strongest discriminative models with 
hidden states [7]. In this paper, since the task is recognising a set of hand-signed digits 

[ ]0 1 9, , ,Y y y y=  (as shown in Figure 4), we define the hidden states to be the 

strokes of gestures. There are in total 13 states in the HCRF model for our own data-
base, and 15 states in the Palm Graffiti Digits database [4]. Figure 3 shows 4 of the 13 
states in our Warwick Hand Gesture Database, which form the gesture of digit 4. The 
optimisation scheme used in our HCRF model is Limited Memory Broyden–Fletcher–
Goldfarb–Shanno method [10]. In our experiments, the weight vector θ is initialised 
with the mean value, and the regularisation factors are set to zero. 

As one sequence of the movement direction represents the trajectory direction vector 
of one hand candidate, a video clip X with R ROIs can have multiple sequences:  

[ ]1 2, , , RX x x x=  . Hence we modified the original HCRF model to suit our special 

case of multiple sequences for one video. In the original HCRF model, the probability 
of gesture y, given the video clip X, hidden states h and weight vector θ, is calculated by, 

 ( ) ( )
( ){ }
( ){ },

exp , , ;
| , , | ,

exp , , ;
h

h y h

y h X
P y X P y h X

y h X

q
q q

q¢

Y
= =

Y
å
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 (6) 

where ( ), , ;y h X qY is the potential function. Follow [7], we define the partition func-

tion :  

 ( ) ( ){ }| , exp , , ;
h

Z y X y h Xq q= Yå  (7) 

For multiple sequences video [ ]1 2, , , RX x x x=  , the new partition function is  

defined: 
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Table 3. All reported experimental results ([4],[5] and [6]) on Palm Graffiti Digits database, 
and results produced by this paper (the proposed method and method of  [1]) 

10 Palm Graffiti Digits database [4] 
 Easy set Hard set 

Correa et al. RoboCup 2009 [5] 75.00% N/A 
Malgireddy et al. CIA 2011 [6] 93.33% N/A 
Alon et al. PAMI 2009 [4] 94.60% 85.00% 
Bao et al. ICEICE 2011 [1] 52.00% 28.57% 
The proposed method 95.67% 86.43% 

 
number of hand candidates. Secondly, the people or other moving objects entering the 
scene after the first frame have no impact on the proposed method. Those objects will 
not be matched to the SURF features of the objects (including gesturing hand) that 
exist since the first frame. In [4], all the hand candidates in all frames have to be 
tracked, which makes the method inapplicable to the real-world scenarios. 

We collected a more challenging database called Warwick Hand Gesture Database 
(see Figure 2 for example) to demonstrate the performance of the proposed method 
under new challenges. 10 gesture classes as in Figure 4(a) are defined for our data-
base. This database consists of two testing sets, namely "easy" and "hard" sets. There 
are 300 video samples for training, 3 samples were captured from each of 10 perfor-
mers for each gesture. There are 1000 video samples in total for testing. For each 
gesture, 10 samples were collected from each of 10 performers. The specifications of 
videos are the same as Palm Graffiti Digits database. Similar to the Palm Graffiti 
Digits database, the hard set of our database captures performers wearing short- 
sleeve tops with cluttered backgrounds. The differences are: No gloves in training set. 
Instead of 1-3 people, we had 2-4 people moving in the background, and there are 
new challenges in the clips, including: gesturing hand out of scene and pause during 
gesture. Since the work of [1] is the one most similar to the proposed method, we 
compared the performance between these two methods (Table 4 and Figure 6). 

Table 4. The performances of method of [1] and the proposed method on Warwick Hand 
Gesture Database 

Warwick hand gesture database 
 Easy set Hard set 

Bao et al. ICEICE 2011 [1] 71.00% 18.20% 
The proposed method 93.80% 85.40% 

 
As shown in the graph of movement direction vectors (Figure 5), the intra-class 

variance in our database is larger than the database of [4]. Our method still produced 
similar accuracy on both Warwick Hand Gesture Database and Palm Graffiti Digits 
Database. The reason our method can handle the new challenge of gesturing hand out 
of scene is that the ROI covers the arm section when the hand is out of the scene. The 
arm section is tracked until the frame in which the hand is back in the scene. Since, 
when the ROI is being redefined and enlarged in this frame, the hand section  
will be covered again. Therefore, the SURF features will be extracted in the new ROI  
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against the complex background with 2 to 4 people moving in it. The method can 
handle challenges such as complex background, skin-coloured regions moving in 
background, performers wearing short-sleeve and face overlapping with hand. The 
method was tested on Palm Graffiti Digits Database [4], and achieved 95.67% on easy 
set, 86.43% on hard set. We also tested the proposed method on our own database 
with additional challenges of gesturing hand out of scene and pause during gesture. 
The method achieved   93.80% on easy set and 85.40% on hard set. 
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